Organic–inorganic hybrid nanoflowers: types, characteristics, and future prospects
نویسندگان
چکیده
Organic-inorganic hybrid nanoflowers, a newly developed class of flower-like hybrid nanoparticles, have received much attention due to their simple synthesis, high efficiency, and enzyme stabilizing ability. This article covers, in detail, the types, structural features, mechanism of formation, and bio-related applications of hybrid nanoflowers. The five major types of hybrid nanoflowers are discussed, i.e., copper-protein, calcium-protein, and manganese-protein hybrid nanoflowers, copper-DNA hybrid nanoflowers, and capsular hybrid nanoflowers. The structural features of these nanoflowers, such as size, shape, and protein ratio generally determine their applications. Thus, the specific characteristics of hybrid nanoflowers are summarized in this review. The interfacial mechanism of nanoflower formation is examined in three steps: first, combination of metal ion and organic matter; second, formation of petals; third, growth of nanoflowers. The explanations provided herein can be utilized in the development of innovative approaches for the synthesis of hybrid nanoflowers for prospective development of a plethora of hybrid nanoflowers. The future prospects of hybrid nanoflowers in the biotechnology industry, medicine, sensing, and catalysis are also discussed.
منابع مشابه
Introduction, synthesis procedures, and applications of organic-inorganic hybrid nanoflowers in biosciences
Organic-inorganic hybrid nanoflowers with flower-like morphology are new nanostructures comprising organic and inorganic components. In general, the organic component of hybrid nanoflowers mostly consists of proteins, DNA, RNA, plant extracts, metabolites, and natural polymers; and the inorganic component composes of various metal phosphates, including copper, calcium, manganese, iron, zinc, co...
متن کاملProtein-inorganic hybrid nanoflowers.
Flower-shaped inorganic nanocrystals have been used for applications in catalysis and analytical science, but so far there have been no reports of 'nanoflowers' made of organic components. Here, we report a method for creating hybrid organic-inorganic nanoflowers using copper (II) ions as the inorganic component and various proteins as the organic component. The protein molecules form complexes...
متن کاملElectrical memory devices based on inorganic/organic nanocomposites
Nonvolatile memory devices based on hybrid inorganic/organic nanocomposites have emerged as excellent candidates for promising applications in next-generation electronic and optoelectronic devices. Among the various types of nonvolatile memory devices, organic bistable devices fabricated utilizing hybrid organic/inorganic nanocomposites have currently been receiving broad attention because of t...
متن کاملConsideration of C-H…O interaction in the heterocyclic organic-inorganic hybrid material: tri-prolinium12- phosphomolibdate heteropolyoxometalate
Crystallographic data analyses indicate that three types of prolinium cations, along with two types of hydrogen bonding, produce and stabilize the helical structure of triprolinium 12-phosphomolybdate. There are similarities between this organic-inorganic compound and peptides/proteins. The stronger “conventional” hydrogen bonds and the less common C-H…O attractions play critical roles in g...
متن کاملConsideration of C-H…O interaction in the heterocyclic organic-inorganic hybrid material: tri-prolinium12- phosphomolibdate heteropolyoxometalate
Crystallographic data analyses indicate that three types of prolinium cations, along with two types of hydrogen bonding, produce and stabilize the helical structure of triprolinium 12-phosphomolybdate. There are similarities between this organic-inorganic compound and peptides/proteins. The stronger “conventional” hydrogen bonds and the less common C-H…O attractions play critical roles in g...
متن کامل